Package: metaEnsembleR 0.1.0
metaEnsembleR: Intuitive Package for Meta-Ensemble Learning (Classification, Regression) that is Fully-Automated
This package significantly lowers the barrier for the practitioners to apply heterogeneous ensemble learning techniques in an amateur fashion to their everyday predictive problems.
Authors:
metaEnsembleR_0.1.0.tar.gz
metaEnsembleR_0.1.0.zip(r-4.5)metaEnsembleR_0.1.0.zip(r-4.4)metaEnsembleR_0.1.0.zip(r-4.3)
metaEnsembleR_0.1.0.tgz(r-4.4-any)metaEnsembleR_0.1.0.tgz(r-4.3-any)
metaEnsembleR_0.1.0.tar.gz(r-4.5-noble)metaEnsembleR_0.1.0.tar.gz(r-4.4-noble)
metaEnsembleR_0.1.0.tgz(r-4.4-emscripten)metaEnsembleR_0.1.0.tgz(r-4.3-emscripten)
metaEnsembleR.pdf |metaEnsembleR.html✨
metaEnsembleR/json (API)
# Install 'metaEnsembleR' in R: |
install.packages('metaEnsembleR', repos = c('https://ajayarunachalam.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/ajayarunachalam/metaensembler/issues
automationclassificationensemble-machine-learningensemble-methodsgeneralization-errorheterogenousmeta-learningpredictive-modelingregressionstacked-ensembles
Last updated 4 years agofrom:4379745243. Checks:OK: 1 WARNING: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-win | WARNING | Oct 31 2024 |
R-4.5-linux | WARNING | Oct 31 2024 |
R-4.4-win | WARNING | Oct 31 2024 |
R-4.4-mac | WARNING | Oct 31 2024 |
R-4.3-win | WARNING | Oct 31 2024 |
R-4.3-mac | WARNING | Oct 31 2024 |
Exports:ensembler.classifierensembler.regression
Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygbmgenericsggplot2globalsgluegowergridExtragtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestRColorBrewerRcpprecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Ensemble Classifiers Training & Prediction, Model Result Evaluation | ensembler.classifier |
Ensemble Regressor Training & Prediction, Model Result Evaluation | ensembler.regression |